Comprehensive Facilities Intelligence Solutions

Facilities Benchmarking & Analysis
Take control of your facilities and make the case for change without the guesswork.

Facilities Assessment & Planning
Plan and execute capital investment plans that are inclusive, credible, flexible, affordable and sustainable.

Space Utilization
Ensure your space is working up to its full potential.

Sustainability Solutions
Measure and improve environmental stewardship.
Vocabulary for Facilities Benchmarking & Analysis

Annual Stewardship
The annual investment needed to ensure buildings will properly perform and reach their useful life “Keep-Up Costs”.

Asset Reinvestment
The accumulation of repair and modernization needs and the definition of resource capacity to correct them “Catch-Up Costs”.

Operational Effectiveness
The effectiveness of the facilities operating budget, staffing, supervision, and energy management.

Service
The measure of service process, the maintenance quality of space and systems, and the customers opinion of service delivery.

Asset Value Change

Operations Success
University of Alaska Southeast Peer Institutions

Return on Physical Assets (ROPA+) includes all space at UAS totaling 567,455 GSF

<table>
<thead>
<tr>
<th>Facilities Peer Institutions</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penn State - Fayette</td>
<td>Fayette County, PA</td>
</tr>
<tr>
<td>Penn State – Hazleton</td>
<td>Penn State, PA</td>
</tr>
<tr>
<td>Penn State - Mont Alto</td>
<td>Mont Alto, PA</td>
</tr>
<tr>
<td>Penn State - Wilkes-Barre</td>
<td>Luzerne County, PA</td>
</tr>
<tr>
<td>University of Maine at Farmington</td>
<td>Farmington, ME</td>
</tr>
<tr>
<td>University of Maine at Fort Kent</td>
<td>Fort Kent, ME</td>
</tr>
<tr>
<td>University of Maine at Machias</td>
<td>Machias, ME</td>
</tr>
<tr>
<td>University of Maine at Presque Isle</td>
<td>Presque Isle, ME</td>
</tr>
<tr>
<td>University of Minnesota Morris</td>
<td>Morris, MN</td>
</tr>
</tbody>
</table>

Comparative Considerations

Size, technical complexity, region, geographic location, and setting are all factors included in the selection of peer institutions
Space
UAS’s space profile is different than peer institutions in several key areas:
• Significantly younger age profile through new construction and renovations
• Lower density and higher grounds intensity
• Region

Capital
• Investment focus on existing space has managed age and deferred maintenance need
• Recurring funding sources are decreasing over time leading to greater reliance on one-time sources of capital

Operations
• UAS operates with a comparable budget to peers, but more resources dedicated to PM
• Resources fluctuate across trades shops, but results are consistent and competitive
UAS’s Sees Unique Trends in Enrollment

Decrease in on-campus student FTEs is more than double peer institutions

Change in Campus GSF & Enrollment (Indexed to 2006) vs. Peers

% Change since 2006

University of Alaska – SE

Peers

- UAS GSF
- UAS Enrolled Student FTE
- UAS Distance Student FTE
- Peer GSF
- Peer Enrolled Student FTE
Relative Impact of Users on Facilities is Less at UAS

Density factor measures the busyness of campus facilities by on-campus users

Change in *Density at UAS

<table>
<thead>
<tr>
<th>Year</th>
<th>Distance Density</th>
<th>Peer Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FY18 *Density Factor

<table>
<thead>
<tr>
<th>Institution</th>
<th>Distance Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS</td>
<td>279</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

Areas Impacted by Density Factor

- Wear and Tear on Space
- Custodial Operations
- Energy Demand

*Density is calculated using On-Campus Student FTEs, faculty and staff

Institutions arranged by Density Factor

© 2017 Sightlines, LLC. All Rights Reserved.
UAS’s Tech Rating is Lower Than The Database Average

Peer average tech rating is the same as peer complexity

Institutions arranged by Technical Complexity

Areas Impacted by Tech Rating

- Energy Consumption
- Maintenance Staffing
- Replacement Values
- Stewardship Targets
- Operational Demand

Tech Rating Distribution

Sightlines Database

© 2017 Sightlines, LLC. All Rights Reserved.
Building Intensity is Higher Than The Database Average

UAS is more similar to the database average for grounds intensity

Institutions arranged by Building Intensity

Institutions arranged by Grounds Intensity

Developed Acreage
JNU 32.75 || KET 2.69 || SIT 2.06
UAS Has Reduced it’s Campus Age by More Than Half

UAS has renovated 38% of total campus square footage

![Graph showing the comparison between UAS Construction Age, UAS Renovation Age, Peers Construction Age, and Peers Renovation Age from 2006 to 2018. The graph indicates that UAS’s Renovation Age is 22 years less than Peers. The graph highlights that the age dropped due to renovations of the Sitka Hangar 332 and Student Housing Units A, B, D & G.]

Age dropped due to renovations of the Sitka Hangar 332 and Student Housing Units A, B, D & G
Understanding Varying Campus Ages

The Juneau campus has the oldest renovation age at UAS

Construction vs. Renovation Age by Campus
Balance PM and Reactive Maintenance:

Younger components still require PM.

Aging components require reactive maintenance.

Over 50

React as Needed:
Issues in components past the end of their lifecycles will demand reactive maintenance.

Highest Risk:
Life cycles of major components past due – end of building life cycle approaching.

Capital Risk:

Balance PM and Reactive Maintenance:

Lower cost space renewal updates needed.

Medium Risk:
“Honeymoon” period – little need for capital reinvestment.

Focus on PM:
Significant need for PM in young systems.

Low Risk:
Life cycles coming due in core building components.

Operational Demands:

UAS Has Half the High Risk Space Than Peers

With limited capital exposure, focus on operational stewardship.

FY18 Campus Renovation Age by Category

% of GSF

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

UAS

10-25

25-50

Over 50

Peer Average

Focus on PM:
Significant need for PM in young systems.

Low Risk:
“Honeymoon” period – little need for capital reinvestment.

Operational Demands:

React as Needed:
Issues in components past the end of their lifecycles will demand reactive maintenance.

Highest Risk:
Life cycles of major components past due – end of building life cycle approaching.

Capital Risk:

Balance PM and Reactive Maintenance:

Lower cost space renewal updates needed.

Medium Risk:
“Honeymoon” period – little need for capital reinvestment.

Low Risk:
Life cycles coming due in core building components.

Focus on PM:
Significant need for PM in young systems.

Low Risk:
“Honeymoon” period – little need for capital reinvestment.

Operational Demands:

React as Needed:
Issues in components past the end of their lifecycles will demand reactive maintenance.

Highest Risk:
Life cycles of major components past due – end of building life cycle approaching.

Capital Risk:

Balance PM and Reactive Maintenance:

Lower cost space renewal updates needed.

Medium Risk:
“Honeymoon” period – little need for capital reinvestment.

Low Risk:
Life cycles coming due in core building components.

Focus on PM:
Significant need for PM in young systems.

Low Risk:
“Honeymoon” period – little need for capital reinvestment.
Well Balanced Age Profiles Level the Waves of Needs

Regional campuses benefit from the low risk age categories

FY18 Campus Age by Renovation Age Category

- Juneau Construction Age: 65% 24% 8%
- Juneau Renovation Age: 39% 34% 8%
- Ketchikan Construction Age: 100% 0% 0%
- Ketchikan Renovation Age: 17% 83% 10%
- Sitka Construction Age: 0% 76% 14%
- Sitka Renovation Age: 14% 86% 0%
Future Forecast Determined by Life Cycle Models

Different construction eras will have competing life cycle needs in the future

<table>
<thead>
<tr>
<th>System</th>
<th>Life Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing</td>
<td>35 years</td>
</tr>
<tr>
<td>Exteriors</td>
<td>30 years</td>
</tr>
<tr>
<td>HVAC</td>
<td>30 years</td>
</tr>
<tr>
<td>Roofing</td>
<td>25 years</td>
</tr>
<tr>
<td>Electrical</td>
<td>25 years</td>
</tr>
</tbody>
</table>

Wave 1 Needs

Wave 2 Needs

Sightlines Database

UAS Renovation Age

© 2017 Sightlines, LLC. All Rights Reserved.
Capital Profile
Defining the Scope of Project Investment

Projects are classified by the category of need they are meeting on campus

Existing Space

- **Building Envelope**
 - Exterior Doors
 - Windows
 - Pointing
 - Roofs
 - Gutters

- **Building Systems**
 - Mechanical Systems
 - HVAC Projects
 - Electrical Systems
 - Plumbing Systems
 - Elevators

- **Space Renewal**
 - Interior Finishes
 - Replacement of Light Fixtures
 - Furniture Replacement

- **Safety/Code**
 - ADA Work
 - Fire/Sprinkler Systems
 - Security Measures
 - Asbestos Removal

- **Infrastructure**
 - Utilities
 - Underground Piping Work
 - Softscapes and Hardscapes
 - Outdoor Lighting and Signage
 - Athletic Field Work

- **Non-Facilities**
 - Design Fees
 - Feasibility Studies
 - IT Work
 - Offsite Work
 - Lab Equipment

- **New Space**
 - Added GSF
Capital Spending Has Gone Toward Existing Space

Existing space spending has contributed toward UAS’s young campus

Total Capital Investment

- Existing Space Investment: 62%
- Infrastructure: 20%
- Non-Facilities: 14%
- New Space Investment: 5%

Average Existing Space Investment: $3.67

2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

Total $ in Millions

© 2017 Sightlines, LLC. All Rights Reserved.
Defining an Annual Investment Target

Annual Funding Target: $4.7M

FY18 Annual Investment Target

- 3% Replacement Value: $10.7
- Life Cycle Need: $4.8
 - Envelope/Mechanical: $4.0
 - Space/Program: $1.7
- Annual Investment Target: $3.0

Replacement Value: $357M

Life Cycle Need represents the total dollars needed to replace components & systems as they come due without accounting for modernization.

Life Cycle needs are discounted to account for intentional deferral, functional obsolescence and extended life cycles based on effective maintenance programs.
Translating Funding Source Terminology

Total Operations and Asset Funding

- Maintenance & Repair – M&R
- Repair & Renew - R&R

Fund 1

- Utilities & Grounds & Custodial
- Operations & Maintenance

Projects

- Recurring Project Dollars
- One-Time Project Dollars
- Annual Stewardship
- Asset Reinvestment

Alaska Terminology

- Utilities & Grounds & Custodial
- Repair & Renew - R&R

Fund 2-9

- Maintenance & Repair – M&R

Sightlines Terminology

- Operations & Maintenance
- Recurring Project Dollars
- Annual Stewardship
- One-Time Project Dollars

- Utilities
- People
- Expenses
- Utilities & Grounds & Custodial

- Daily Service & PM

© 2017 Sightlines, LLC. All Rights Reserved.
UAS is Managing Deferral Since 2016

Since 2009, UAS has relied more on one-time capital to address needs.
UAS Addresses More Target Need than Peers

Total Capital Investment as a Percent of Funding Target vs. Peers

University of Alaska – SE

- **100%**
- **92%**

Peer Institutions

- **100%**
- **73%**

Capital Spending % of Total Target

- **Annual Stewardship**
- **Asset Reinvestment**
- **Average**

Fund 1 Projects: Annual Stewardship
Funds 2-9 Projects: Asset Reinvestment
Historic Investment has Resulted in Lower Need at UAS

Regional construction costs are 91% higher in Juneau than at peer institutions.

Total Asset Reinvestment Need vs. Peers
(Regionally Adjusted)

University of Alaska – SE

Peer Institutions
Addressing Future Need Strategically

Understanding timeframe and type helps to prioritize needs

Current Need
- What on campus is currently broken, operating at a significantly higher cost, or requires significantly more time to maintain?

Lifecycle Need
- What building needs will come due in the next 10 years?
 - Building Exteriors
 - Electrical
 - HVAC
 - Interiors
 - Plumbing
 - Roofing

Remaining Need
- Infrastructure & modernization
 - Sightlines estimate

Current Need
- What on campus is currently broken, operating at a significantly higher cost, or requires significantly more time to maintain?

Total 10 Year Need
- $34

© 2017 Sightlines, LLC. All Rights Reserved.
Addressing Future Need Strategically

Historical investment levels address current and renewal need
Operations Success
UAS’s Expenditures Have Remained Relatively Flat

Peer expenditures have steadily increased over time

Facilities Operating Actuals vs. Peers

COLI Adjusted

<table>
<thead>
<tr>
<th>University of Alaska – SE</th>
<th>Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[colours representing different years]</td>
<td>[colours representing different years]</td>
</tr>
</tbody>
</table>

- University of Alaska – SE:
 - COLI Adjusted Expenditure: $6.70
- Peer Institutions:
 - COLI Adjusted Expenditure: $5.77
Budget Cuts Limit Purchasing Power

In FY18, UAS experiences a $1.1M shortfall in budget resources relative to inflation.
UAS is Spending at Peer Levels

COLI adjustment factor increases peer resource levels by 41% on average

FY18 Facilities Operating Actuals

COLI Adjusted

$/GSF

A B C D UAS E F G H I

Daily Service PM Average

$6.73
Strong PM Ensures Lifecycles are Met or Exceeded

UAS’s young campus benefits greatly from a strong PM program

Preventive Maintenance Spending

FY18 PM Spending vs. Peers

Best Practice Range
Utility Operating Expenditures Similar to Peers

UAS has seen recent increases toward utility expenditures

Utility Operating Actuals vs. Peers

COLI Adjusted

<table>
<thead>
<tr>
<th>Year</th>
<th>University of Alaska – SE</th>
<th>Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>$2.15</td>
<td>$2.24</td>
</tr>
<tr>
<td>2015</td>
<td>$2.24</td>
<td>$2.24</td>
</tr>
<tr>
<td>2016</td>
<td>$2.0</td>
<td>$2.0</td>
</tr>
<tr>
<td>2017</td>
<td>$2.0</td>
<td>$2.0</td>
</tr>
<tr>
<td>2018</td>
<td>$2.0</td>
<td>$2.0</td>
</tr>
</tbody>
</table>
UAS Uses Less Energy Overall

UAS is consumes greater amounts of electricity than peer institutions

Total Energy Consumption vs. Peers

<table>
<thead>
<tr>
<th>Year</th>
<th>BTU/GSF</th>
<th>University of Alaska – SE</th>
<th>*Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>82,559</td>
<td>95,270</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>82,559</td>
<td>95,270</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>82,559</td>
<td>95,270</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>82,559</td>
<td>95,270</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>82,559</td>
<td>95,270</td>
<td></td>
</tr>
</tbody>
</table>

* Peer Institutions use a fossil fuel mix of Natural Gas, Oil #2, Propane, Wood. On average, Peer Institutions primarily use 80% Natural Gas & 20% other Fossil Fuels.
UAS’s Energy Costs Have Been Increasing

$1.0M in savings since 2014

Total Energy Cost vs. Peers
COLI Adjusted

University of Alaska – SE

Peer Institutions

$/MMBTU

$0.0 $10.0 $20.0 $30.0 $40.0 $50.0 $60.0 $70.0

$45.96 $54.64

Fossil Electric Average
Fossil Drives The Increasing Cost of Utilities at UAS

UAS is spending more on utilities overall despite reduced electric unit costs

Fossil Fuel Unit Cost vs. Peers

COLI Adjusted

<table>
<thead>
<tr>
<th>Year</th>
<th>UAS</th>
<th>Peers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>$25.0</td>
<td>$20.0</td>
</tr>
<tr>
<td>2015</td>
<td>$22.0</td>
<td>$18.0</td>
</tr>
<tr>
<td>2016</td>
<td>$20.0</td>
<td>$16.0</td>
</tr>
<tr>
<td>2017</td>
<td>$21.0</td>
<td>$17.0</td>
</tr>
<tr>
<td>2018</td>
<td>$23.0</td>
<td>$19.0</td>
</tr>
</tbody>
</table>

Electric Unit Cost vs. Peers

COLI Adjusted

<table>
<thead>
<tr>
<th>Year</th>
<th>UAS</th>
<th>Peers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>$30.0</td>
<td>$25.0</td>
</tr>
<tr>
<td>2015</td>
<td>$28.0</td>
<td>$24.0</td>
</tr>
<tr>
<td>2016</td>
<td>$26.0</td>
<td>$23.0</td>
</tr>
<tr>
<td>2017</td>
<td>$28.0</td>
<td>$24.0</td>
</tr>
<tr>
<td>2018</td>
<td>$30.0</td>
<td>$25.0</td>
</tr>
</tbody>
</table>
Maintenance Staff Are Spending More Time on DS Since 2013

While total FTE has trended down since 2006, less time is spent on non-daily service work.

Maintenance Trades FTEs vs. Sold Service

- Effective Maintenance FTE
- Sold Service FTE
- Daily Service %

FTE: 0, 2, 4, 6, 8, 10, 12, 14, 16

Daily Service %: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%
More Time Spent on DS Equates to Reduced Coverage

Maintenance Staffing

- GSF
- Effective FTE

Maintenance Coverage

- GSF/FTE
- FTEs

<table>
<thead>
<tr>
<th>Year</th>
<th>GSF</th>
<th>GSF/FTE</th>
<th>Effective FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>49,545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>50,533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>51,801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>55,420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>55,504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>59,693</td>
<td>71,274</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>69,883</td>
<td>73,966</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>78,599</td>
<td>69,875</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>69,875</td>
<td>78,599</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>55,034</td>
<td>55,930</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>55,034</td>
<td>55,930</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>55,930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>55,930</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Peers Cover More Space Than UAS

UAS has higher inspection scores

FY18 Maintenance Coverage

FY18 Maintenance Materials

COLI Adjusted

FY18 General Repair Score

Peers

UAS

$0.35

$0.0

$1.0

$0.8

$0.6

$0.4

$0.2

$0.0

$0.35

© 2017 Sightlines, LLC. All Rights Reserved.
Custodial Coverage has Increased by 39% Since 2006

Increases in GSF and decreases in FTE result in increasing coverage

Custodial Staffing

Custodial Coverage
UAS Custodial Provides Value with Fewer Resources

Inspection scores are competitive with peer institutions

FY18 Custodial Coverage

FY18 Custodial Materials

COLI Adjusted

FY18 Custodial Supervision

FY18 Cleanliness Score
Grounds Staffing Needs Are Driven by Snow Removal

Fluctuations in coverage is determined by the amount of snow removal hours

![Grounds Staffing Graph]

- **Maintained Acres** vs. **Effective FTE** over the years from 2006 to 2018.

![Grounds Coverage Bar Chart]

- **Acres/FTES** from 2006 to 2018, showing variations in coverage.

© 2017 Sightlines, LLC. All Rights Reserved.
UAS Grounds Achieves Strong Results from Greater Inputs

The grounds trade department spends nearly 10 times more for materials.
Conclusion
Key Takeaways

• A young space profile benefits from proactive capital and operational approaches – prioritize sustaining or growing recurring capital and preventive maintenance funds
 • As new space (ABMS) comes online, work to set a precedent for best practice capital funding and operations moving forward

• Reinvestment into existing space preserves historic investments into new space, addresses deferred maintenance needs, mitigates exposure to failures and is aligned with enrollment trends

• Operational PM spend is a strong and growing program which should continue to be developed moving forward. PM is a powerful tool to reduce future reactive costs and extend system life cycles, which reduces future capital demand
Facilities Scorecard

Measuring and Tracking

Key Performance Indicators
UA Facilities Scorecard

What are the goals of the score card?

What is driving these measurements?

What is driving the categories?

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Measures</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Management Efficiency</td>
<td>Save money</td>
<td>Customer Service Satisfaction Surveys</td>
</tr>
<tr>
<td></td>
<td>Process improvement</td>
<td>Time to Complete WOs</td>
</tr>
<tr>
<td></td>
<td>Organizational optimization</td>
<td># of WOs / year</td>
</tr>
<tr>
<td></td>
<td>WOs by type</td>
<td></td>
</tr>
<tr>
<td>Operating Cost Reduction</td>
<td>Save money</td>
<td>Annual Utilities Consumption $/GSF</td>
</tr>
<tr>
<td></td>
<td>Efficient Processes</td>
<td>BTU/BSF</td>
</tr>
<tr>
<td></td>
<td>Better user experience</td>
<td>M&R Current vs. SROI Goal</td>
</tr>
<tr>
<td>Deferred Maint. Backlog Reduction</td>
<td>Better user experience</td>
<td>Peer comparison of resources ($ and FTE / GSF)</td>
</tr>
<tr>
<td></td>
<td>Save money</td>
<td>Annual Preventive and Reactive Maint.;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Renewal and Repurposing $/GSF & FTE/BSF</td>
</tr>
<tr>
<td>Off-campus Lease Reductions</td>
<td>Reduce operating budget cost</td>
<td>Change in # of leases</td>
</tr>
<tr>
<td></td>
<td>Increase utilization of existing facilities</td>
<td>Change in Annual off-campus lease costs</td>
</tr>
<tr>
<td></td>
<td>Increase collaboration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase student access</td>
<td></td>
</tr>
<tr>
<td>Space Utilization</td>
<td>Increase usage of owned space</td>
<td>Classroom Utilization (Student FTE/BSF)</td>
</tr>
<tr>
<td></td>
<td>Reduce need for new facilities</td>
<td>Student/BSF of non-research Space</td>
</tr>
<tr>
<td></td>
<td>Reduce operating budget cost</td>
<td>Students/BSF of Research Space</td>
</tr>
<tr>
<td></td>
<td>Increase space available for programs</td>
<td></td>
</tr>
</tbody>
</table>
KPI Example

Our KPI Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-Category</th>
<th>Metric</th>
<th>Our Numbers</th>
<th>Target</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Renovation Age</td>
<td>Percent of space <25 years old</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Academic Space</td>
<td>Academic Space Per Student (GSF/Student)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Annual Stewardship</td>
<td>$/GSF Spending</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operations
- **Preventive Maintenance**
 - PM (% of facilities operating budget)
- **Maintenance Staffing**
 - Coverage (GSF/FTE)
 - Supervision (FTE/Supervisor)
- **Custodial Staffing**
 - Coverage (GSF/FTE)
 - Supervision (FTE/Supervisor)
- **Grounds Staffing**
 - Coverage (Acre/FTE)
 - Supervision (FTE/Supervisor)
- **Energy Performance**
 - Consumption (BTU/GSF)
- **Service Performance**
 - Service Process Index (1-100)