University of Alaska Anchorage
FY18 Facilities Benchmarking & Analysis
Comprehensive Facilities Intelligence Solutions

FACILITIES ASSESSMENT & PLANNING
Plan and execute capital investment plans that are inclusive, credible, flexible, affordable and sustainable.

SPACE UTILIZATION
Ensure your space is working up to its full potential.

SUSTAINABILITY SOLUTIONS
Measure and improve environmental stewardship.

FACILITIES BENCHMARKING & ANALYSIS
Take control of your facilities and make the case for change without the guesswork.

© 2017 Sightlines, LLC. All Rights Reserved.
Vocabulary for Facilities Benchmarking & Analysis

Annual Stewardship
The annual investment needed to ensure buildings will properly perform and reach their useful life “Keep-Up Costs”.

Asset Reinvestment
The accumulation of repair and modernization needs and the definition of resource capacity to correct them “Catch-Up Costs”.

Operational Effectiveness
The effectiveness of the facilities operating budget, staffing, supervision, and energy management.

Service
The measure of service process, the maintenance quality of space and systems, and the customers opinion of service delivery.

Asset Value Change

Operations Success
University of Alaska – Anchorage Peer Institutions

Return on Physical Assets (ROPA+) includes all space at UAA totaling 3.36 Million GSF

<table>
<thead>
<tr>
<th>Facilities Peer Institutions</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland State University</td>
<td>Portland, OR</td>
</tr>
<tr>
<td>The University of Maine</td>
<td>Orono, ME</td>
</tr>
<tr>
<td>University of Alaska Fairbanks</td>
<td>Fairbanks, AK</td>
</tr>
<tr>
<td>University of Iowa</td>
<td>Iowa City, IA</td>
</tr>
<tr>
<td>University of Missouri – Kansas City</td>
<td>Kansas City, MO</td>
</tr>
<tr>
<td>University of Missouri – St. Louis</td>
<td>St. Louis, MO</td>
</tr>
<tr>
<td>University of Southern Maine</td>
<td>Gorham, ME</td>
</tr>
<tr>
<td>West Chester University of PA</td>
<td>West Chester, PA</td>
</tr>
</tbody>
</table>

Comparative Considerations
Size, technical complexity, region, geographic location, and setting are all factors included in the selection of peer institutions.
Core Campus Observations

Space
- Campus is younger than peers with larger, more complex buildings
- On-campus enrollment is decreasing leading to a reduction in campus density over time

Capital
- New construction has been the primary focus of UAA’s funding historically; 1/3 of resources are directed toward existing space on average
- Peers benefit from larger sources of recurring capital

Operations
- Operating resources are decreasing over time leading to expanding coverage levels across all shops
- Preventive maintenance expenditures are above peer averages, an important component of a stretched budget
- Energy consumption is below peer averages, total costs are increasing and are impacted by the rising unit prices of fuel
Space Profile
UAA’s Technical Complexity is Above Peer Average

Technical Complexity

Areas Impacted by Tech Rating

- Energy Consumption
- Maintenance Staffing
- Replacement Values
- Stewardship Targets
- Operational Demand

Institutions arranged by Technical Complexity

<table>
<thead>
<tr>
<th>Technical Complexity (1-5)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>UAA</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average: 3.05

More complex

Less complex

Tech Rating Distribution

Sightlines Database

© 2017 Sightlines, LLC. All Rights Reserved.
UAA’s Campus has Changed Since 2006

UAA’s on-campus enrollment has significantly decreased, making campus less busy.
UAA has a Higher Density Campus than Peers

Density factor measures the busyness of campus

Change in *Density at UAA

*Density Factor

Areas Impacted by Density Factor

- Wear and Tear on Space
- Custodial Operations
- Energy Demand

*Density is calculated using On-Campus Student FTEs

Institutions arranged by Density Factor
Qualifying Metrics – Building and Grounds Intensity

UAA has larger buildings and fewer buildings per acre than peers.

Building Intensity
- Building Intensity chart showing the number of buildings per 1,000,000 GSF.
- Comparison of UAA with peers A to H.

Grounds Intensity
- Grounds Intensity chart showing the number of buildings per developed acre.
- Comparison of UAA with peers A to H.
UAA Carries a Younger Campus Age

UAA has started renovating buildings which offsets aging

Construction vs. Renovation Age

UAA’s Renovation Age is 15 years less than Peers
Anchorage & PWSC are Younger through Renovations

These two campuses have firmly reduced their age through renovations.

Campus Age by Category

- Anchorage
- KPC
- Kodiak
- MatSu
- PWSC
- Peers

© 2017 Sightlines, LLC. All Rights Reserved.
Balance PM and Reactive Maintenance:
Younger components still require PM. Aging components require reactive maintenance.

UAA Has More Low Risk Space Than Peers

Lower risk affords the opportunity to plan ahead for future needs

Campus Renovation Age by Category

Under 10 - Low Risk: 39%
10 to 25 - Medium Risk: 18%
25 to 50 - Higher Risk: 42%
Over 50 - Highest Risk: 33%

Operational Demands:
- React as Needed: Issues in components past the end of their lifecycles will demand reactive maintenance.
- Focus on PM: Significant need for PM in young systems.

Capital Risk:
- Higher Risk: Life cycles coming due in core building components.
- Medium Risk: Lower cost space renewal updates needed.
- Low Risk: "Honeymoon" period – little need for capital reinvestment.
Understanding Campus Age

Renovations at Anchorage and PWSC make systems younger

Campus Age by Category

<table>
<thead>
<tr>
<th>Campus</th>
<th>Under 10</th>
<th>10 to 25</th>
<th>25 to 50</th>
<th>Over 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchorage Construction Age</td>
<td>18%</td>
<td>40%</td>
<td>40%</td>
<td>100%</td>
</tr>
<tr>
<td>Anchorage Renovation Age</td>
<td>18%</td>
<td>4%</td>
<td>4%</td>
<td>100%</td>
</tr>
<tr>
<td>KPC Construction Age</td>
<td>32%</td>
<td>40%</td>
<td>40%</td>
<td>0.26%</td>
</tr>
<tr>
<td>KPC Renovation Age</td>
<td>4%</td>
<td>4%</td>
<td>56%</td>
<td>0.26%</td>
</tr>
<tr>
<td>Kodiak Construction Age</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Kodiak Renovation Age</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>MatSu Construction Age</td>
<td>31%</td>
<td>31%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>MatSu Renovation Age</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>PWSC Construction Age</td>
<td>7%</td>
<td>16%</td>
<td>38%</td>
<td>46%</td>
</tr>
<tr>
<td>PWSC Renovation Age</td>
<td>47%</td>
<td>38%</td>
<td>16%</td>
<td>46%</td>
</tr>
</tbody>
</table>

© 2017 Sightlines, LLC. All Rights Reserved.
Understanding the Impact of Age on Future Need

Different construction waves will have competing life cycle needs in the future.

<table>
<thead>
<tr>
<th>System</th>
<th>Life Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing</td>
<td>35 years</td>
</tr>
<tr>
<td>Exteriors</td>
<td>30 years</td>
</tr>
<tr>
<td>HVAC</td>
<td>30 years</td>
</tr>
<tr>
<td>Roofing</td>
<td>25 years</td>
</tr>
<tr>
<td>Electrical</td>
<td>25 years</td>
</tr>
</tbody>
</table>

Wave 1 Needs

Wave 2 Needs

© 2017 Sightlines, LLC. All Rights Reserved.
Capital Profile
Capital Funding Sources

Total Operations and Asset Funding

Alaska Terminology
- Utilities & Grounds & Custodial
- Maintenance & Repair – M&R
- Repair & Renew - R&R

Sightlines Terminology
- Operations & Maintenance
 - People
 - Expenses
 - Utilities
 - Daily Service & PM
 - Utilities

Fund 1
- Fund 2-9

Projects
- Recurring Project Dollars
- One-Time Project Dollars
- Annual Stewardship
- Asset Reinvestment
Projects are classified by the category of need they are addressing on campus.
Limited Capital Spending Focused on Existing Space

Existing Space investment has stayed consistent over time.
Defining an Annual Investment Target

Annual Funding Target: $34.1M

FY17 Annual Investment Target

- 3% Replacement Value: $63.2M
- Life Cycle Need: $30.6M
- Annual Investment Target: $15.3M

Life Cycle Need represents the total dollars needed to replace components & systems as they come due without accounting for modernization.

Life Cycle needs are discounted to account for intentional deferral, functional obsolescence and extended life cycles based on effective maintenance programs.

Replacement Value: $2.1B
Capital Investment

In recent years UAA has deferred more to the total backlog of need.
Annual Stewardship is Less Consistent at UAA

UAA’s peers have higher reliability to reach target with more recurring funds

Total Capital Investment as a Percent of Funding Target

- **University of Alaska – Anchorage**
 - Capital Spending % of Total Target
 - Annual Stewardship
 - Asset Reinvestment
 - Average

- **Peer Institutions**
 - Capital Spending % of Total Target
 - Annual Stewardship
 - Asset Reinvestment
 - Average

Target

- **2006**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2007**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2008**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2009**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2010**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2011**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2012**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2013**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2014**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2015**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2016**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2017**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2018**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

Target

- **2006**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2007**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2008**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2009**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2010**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2011**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2012**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2013**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2014**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2015**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2016**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2017**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2018**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

Target

- **2006**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2007**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2008**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2009**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2010**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2011**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2012**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2013**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2014**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2015**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2016**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2017**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%

- **2018**
 - Annual Stewardship: 20%
 - Asset Reinvestment: 40%
 - Average: 30%
Total Need is Greater than Peers

Total need based on updated FY18 Facilities Assessment = $503.5M

<table>
<thead>
<tr>
<th>Year</th>
<th>University of Alaska – Anchorage</th>
<th>Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$140</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>$150</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>$160</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>$170</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>$180</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>$190</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>$200</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>$210</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>$220</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>$230</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$240</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>$250</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>$260</td>
<td></td>
</tr>
</tbody>
</table>
Breaking Down Future Needs

Total need across all campuses = $503.5M

Total Asset Reinvestment Need as of FY18

- Backlog: $293
- A: $69
- B: $130
- C: $12

© 2017 Sightlines, LLC. All Rights Reserved.
Main Drivers of Need are Defined by Life Cycles

Facilities Assessment reflects limited reliability issues

Project Category
- Repair/Maintenance
- Modernization
- Infrastructure

Investment Criteria
- Reliability
- Safety/Code
- Asset Preservation
- Program Improvement
- Economic Opportunity
Strategies to Address Deferred Maintenance

• **Strategy 1: Change the conversation** on campus and in the system. Educate policy makers about the impacts of the space profile, capital plans that are aligned with the institutional mission and risk, and improving operating effectiveness while lowering costs.
 • Utilize 10 year capital planning resources to communicate upcoming needs
 • Use WO system to identify buildings on campus that are causing significant operational strains
 • Share identified needs and challenges with policy makers

• **Strategy 2: Set capital priorities to address the deferred maintenance needs in aging buildings that are determined to be critical to the mission and programmatic needs of universities.**
 • Develop an annual capital priority list that will drive allocation of available funding
 • Align DM and WO data to identify core areas of overlap
Strategies to Address Deferred Maintenance

- **Strategy 3: Consider eliminating or replacing aging space** with new modern facilities, especially buildings with certain construction vintages where poor quality construction was prevalent. Sometimes less is more when it comes to addressing aging buildings with lots of deferred maintenance. Also, consider policies that will insulate UAA from additional capital and operational needs.
 - Consider renovation through replacement policies
 - Consider no net new space policies
 - Consider policies that mandate that new construction is in support of the mission and future program needs
Strategies to Address Deferred Maintenance

• **Strategy 4:** Make annual stewardship (keep-up) investment that addresses building components as they come due a priority. The more you keep-up with life cycles as they come due, the less deferred maintenance grows.
 - Lobby for policies that drive commitment at the institutional/board level
 - “Relentless incrementalism” – even small allocations can make a big difference over time

• **Strategy 5:** Institute facilities operational practices that are proactive at extending the life cycles of key expensive building components like HVAC, electrical systems and roofs. Proactive maintenance is not only a good idea when it comes to managing university facilities, it will save money in the long-run.
 - Grow the PM program so that when investments are made, those systems meet or exceed their useful life.
Operations Success
UAA has reduced its Daily Service expenditures in recent years.
Budget Cuts Limit Purchasing Power

2018 difference amounts to $10.3M less buying power than 2009 budget
Facilities Operating Expenditures vs. Peers

UAA was spending similarly to peers in FY13

Facilities Operating Actuals

$/GSF

Daily Service PM Average

A B C D E F G UAA FY13 UAA FY18 H
UAA Allocates More Resources to PM than Peers

Increases in PM program yield savings down the road by protecting assets

Preventive Maintenance Spending

Best Practice Range
Utility Operating Expenditures Compared to Peers

UAA versus Peer Utility $ per GSF

Fiscal Year

University of Alaska - Anchorage

Peer Institutions
Total Energy Consumption

UAA is consuming less energy than peer institutions in recent years

Total Energy Consumption vs. Peers

University of Alaska – Anchorage

*Peer Institutions

© 2017 Sightlines, LLC. All Rights Reserved.
Energy Expenses are Increasing Over Time

Total Energy Cost vs. Peers

University of Alaska – Anchorage

Peer Institutions

<table>
<thead>
<tr>
<th>Year</th>
<th>Fossil</th>
<th>Electric</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td>$42.65</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td>$31.64</td>
</tr>
</tbody>
</table>

$/MMBTU

$0.0

$10.0

$20.0

$30.0

$40.0

$50.0

$60.0

$70.0

$42.65

$31.64

© 2017 Sightlines, LLC. All Rights Reserved.
Differences in Unit Costs are Growing vs. Peers

Electric unit cost has nearly doubled since FY06
Maintenance Staffing Coverage

Coverage ratios are increasing over time

Maintenance Staffing

Maintenance Coverage

GSF/FTE

FTEs

GSF

FTE

UAA has fewer maintenance supervisors and a slightly lower repair score.

Maintenance Staffing

- GSF/TTE
- FTE/Sup

Maintenance Supervision

- General Repair/ Impression
- Peers: 3.9
- UAA: 3.86
Custodial Staffing Coverage

Steady coverage historically, fewer staff in FY18 lead to increased coverage
UAA has fewer custodial staff and a higher cleanliness score than peers

Custodial Staffing

<table>
<thead>
<tr>
<th></th>
<th>UAA</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSF/FTE</td>
<td>60,000</td>
<td>40,000</td>
<td>30,000</td>
<td>50,000</td>
<td>70,000</td>
<td>60,000</td>
<td>50,000</td>
<td>40,000</td>
<td>30,000</td>
</tr>
</tbody>
</table>

Custodial Supervision

<table>
<thead>
<tr>
<th></th>
<th>UAA</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE/Super</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Custodial Materials

<table>
<thead>
<tr>
<th></th>
<th>UAA</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/GSF</td>
<td>$0.05</td>
<td>$0.10</td>
<td>$0.15</td>
<td>$0.20</td>
<td>$0.05</td>
<td>$0.10</td>
<td>$0.15</td>
<td>$0.20</td>
<td>$0.05</td>
</tr>
</tbody>
</table>

Cleanliness

<table>
<thead>
<tr>
<th></th>
<th>Peers</th>
<th>UAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleanliness Score</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Grounds Staffing Coverage

Coverage increases as the department reduces in size

Grounds Staffing

Grounds Coverage

- Acres/FTE
- FTEs
- Acres
- Maintained Acres

Years: 2006 to 2018

2006: 500 Acres/FTE
2007: 500 Acres/FTE
2008: 500 Acres/FTE
2009: 500 Acres/FTE
2010: 400 Acres/FTE
2011: 300 Acres/FTE
2012: 200 Acres/FTE
2013: 100 Acres/FTE
2014: 50 Acres/FTE
2015: 40 Acres/FTE
2016: 30 Acres/FTE
2017: 20 Acres/FTE
2018: 10 Acres/FTE
Grounds Metrics

Similar personnel resources, fewer materials return strong results vs. peers

Grounds Staffing

Grounds Supervision

Grounds Materials

Grounds Inspection Score
Conclusion
Key Takeaways

UAA is a young campus compared to peers. A younger campus affords UAA the opportunity to operate proactively and plan ahead for future capital needs. Focusing PM work on low-risk space and renovating old space as key building systems come due will manage risk and allow UAA to get the most out of its core components.

Leveraging capital to focus on existing space will reduce the backlog in buildings and reduce the higher than average asset reinvestment need. Decreasing campus enrollment can offer opportunities to manage and optimize space utilization through renovations, repurposing and/or divestment.

UAA’s PM spending is nearing best practice range. If budgets rebound, maintain or grow the resources that are dedicated to PM. If budgets are cut further, work to maintain resources dedicated to the PM program.
Facilities Scorecard

Measuring and Tracking

Key Performance Indicators
What are the goals of the score card?

What is driving these measurements?

What is driving the categories?

<table>
<thead>
<tr>
<th>Facilities Council Scorecard</th>
</tr>
</thead>
<tbody>
<tr>
<td>As of November 7, 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Objectives</th>
<th>Measures</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Management Efficiency</td>
<td>Save money</td>
<td>Customer Service Satisfaction Surveys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process improvement</td>
<td>Time to Complete WOs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizational optimization</td>
<td># of WOs/year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WOs by type</td>
<td></td>
</tr>
<tr>
<td>Operating Cost Reduction</td>
<td>Save money</td>
<td>Annual Utilities Consumption $/GSF BTU/SGF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficient Processes</td>
<td>M&R Current vs. SSGM Goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Better user experience</td>
<td>Peer comparison of resources ($ and FTE / GSF)</td>
<td></td>
</tr>
<tr>
<td>Deferred Maint.</td>
<td>Better user experience</td>
<td>Annual Preventive and Reactive Maint.; and Renewal and</td>
<td></td>
</tr>
<tr>
<td>Backlog Reduction</td>
<td>Save money</td>
<td>Repurposing $/GSF & FTE/SGF</td>
<td></td>
</tr>
<tr>
<td>Off-campus Lease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reductions</td>
<td>Reduce operating budget cost</td>
<td>Change in # of leases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase utilization of existing facilities</td>
<td>Change in Annual off-campus lease costs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase collaboration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase student access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Utilization</td>
<td>Increase usage of owned space</td>
<td>Classroom Utilization (Student FTE/SGF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce need for new facilities</td>
<td>Student/SGF of non-research Space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce operating budget cost</td>
<td>Students/SGF of Research Space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase space available for programs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
KPI Example

<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-Category</th>
<th>Metric</th>
<th>Our Numbers</th>
<th>Target</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Renovation Age</td>
<td>Percent of space <25 years old</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Academic Space</td>
<td>Academic Space Per Student (GSF/Student)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Annual Stewardship</td>
<td>$/GSF Spending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preventive Maintenance</td>
<td>PM (% of facilities operating budget)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Staffing</td>
<td>Coverage (GSF/FTE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision (FTE/Supervisor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Custodial Staffing</td>
<td>Coverage (GSF/FTE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision (FTE/Supervisor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grounds Staffing</td>
<td>Coverage (Acre/FTE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision (FTE/Supervisor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Performance</td>
<td>Consumption (BTU/GSF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Performance</td>
<td>Service Process Index (1-100)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our KPI Results

- **Stewardship**
- **Operations**
- **Total Index**

The chart shows the trend of our KPI results from FY2010 to FY2015.
Questions & Discussion